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Abstract The decomposition of experimental data into dynamic modes using a data-based algorithm
is applied to Schlieren snapshots of a helium jet and to time-resolved PIV-measurements of an un-
forced and harmonically forced jet. The algorithm relies on the reconstruction of a low-dimensional
inter-snapshot map from the available flow field data. The spectral decomposition of this map results
in an eigenvalue and eigenvector representation (referred to as dynamic modes) of the underlying
fluid behavior contained in the processed flow fields. This dynamic mode decomposition allows the
breakdown of a fluid process into dynamically revelant and coherent structures and thus aids in the
characterization and quantification of physical mechanisms in fluid flow.

Keywords dynamic mode decomposition · Arnoldi method · iterative techniques · experimental fluid
dynamics

1 Introduction

The rise of computational resources and fast algorithms has fueled the detailed analysis of many flow
fields. Global stability analyses, i.e., the decomposition of flow fields in complex geometries into modal
structures, are becoming increasingly commonplace, and efficient algorithms are available for the ex-
traction of stability information from numerical simulations of flows in complex configurations [24].
In these analyses, the Arnoldi algorithm (and its variations) lies at the center of any computational
effort [5]. This algorithm reduces the Jacobian stability matrix by successive orthogonalizations and
projections to an equivalent matrix of smaller size whose eigenvalues approximate some of the eigen-
values of the original system, see [13]. During these procedures the Jacobian matrix or its action on
a specific flow field has to be known. This restriction has limited the application of the Arnoldi tech-
nique to flow fields from numerical simulations, since only in this case a model (e.g., the linearized and
discretized Navier-Stokes equations) is known.

Experimental data, on the other hand, have been largely processed by data-based algorithms,
rather than model-based algorithms. This type of algorithms includes, for example, various statistical
techniques, such as mean values, root-mean-square (rms) values, conditional sampling techniques (see,
e.g., [1]) or quadrant analyses (see, e.g., [18]). It is however safe to say that in terms of isolating the
underlying fluid mechanisms, these statistical techniques are far inferior to the model-based techniques
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applied to numerically generated data. An exception is given by the proper orthogonal decomposition
(POD) technique ([14], [2]) which can equally be applied to numerically generated or experimentally
measured flow fields [8]. Its premise, however, rests on a hierarchical ranking of coherent structures
based on their energy content. Mathematically, it uses an eigenvalue decomposition of a (commonly)
time-averaged spatial correlation tensor. The reliance on second-order flow statistics, however, does
not directly capture the dynamics of the underlying coherent structures and thus limits the informa-
tion that can be gained about fundamental dominant processes. The decomposition of experimental
measurements into temporally and spatially coherent structures is an important tool in the arsenal
of any experimentalists, since the breakdown of a flow field into organized, connected and large-scale
fluid elements (see [11], [22] for examples of a decomposition into coherent structures) allows a more
thorough analysis of complex fluid processes.

In this article we introduce and apply a decomposition method, referred to as the dynamic mode
decomposition (DMD) [21], that attempts to extract dynamic information from flow fields without
relying on the availability of a model, but rather is based on a sequence of snapshots. It thus can be
applied equally well to numerically generated flow fields and experimentally measured velocity data. A
brief description of the underlying idea of this method will be given (for details the reader is referred
to [21]) and various modifications and application possibilities will be listed. Two examples will then
demonstrate the potential of this technique: (i) the decomposition of Schlieren snapshots of a helium jet
and (ii) the decomposition of time-resolved PIV-measurements of an unforced and forced jet. The two
examples have been chosen to showcase how the decomposition method equally applies to visualized
flow fields (Schlieren snapshots) and to quantitatively measured flow fields (PIV snapshots).

2 Mathematical background and algorithm

The mathematics underlying the extraction of dynamic information from time-resolved snapshots of
experimental data is closely related to the idea underlying the Arnoldi algorithm. Starting point of the
Arnoldi algorithm is a sequence of vectors (spanning a Krylov subspace K) of the form

{

v, Av, A2v, . . . , An−1v
}

(1)

with A as the linear operator (system matrix) that maps a given flow field v to a subsequent flow
field Av a time-step ∆t apart. From this sequence an orthonormalized basis V is constructed using
Gram-Schmidt orthogonalization techniques, and by projection onto this basis V according to

H ≡ V
H

AV (2)

a lower-dimensional matrix H, which is of upper Hessenberg form, is obtained. This matrix H describes
the dynamics of the underlying system (given by A) restricted to the space spanned by the sequence (1).
For a sufficiently long sequence that captures the dominant features of the process described by A the
low-dimensional matrix H acts as a proxy of the high-dimensional system matrix A; in particular, the
eigenvalues ω of H approximate some of the eigenvalues of A and thus produce stability information
(growth rates and phase velocities, ω = ωr + iωi) if A represents the Jacobian (linearized stability)
matrix.

The exact algorithm to construct the orthonormal basis V and to extract the Hessenberg matrix H

relies on the explicit availability of a routine that determines the action of A on arbitrary vectors, i.e.,
given q we have to able to compute Aq. This latter requirement for the Arnoldi algorithm is easily
satisfied for numerical simulations where the Jacobian matrix A is available explicitly or its action
is available in form of a subroutine; in experiments, on the other hand, this requirement has to be
circumvented, and a successful algorithm has to only rely on data as input. Nevertheless, the general
idea of the Arnoldi algorithm can, in spirit, be carried over to the design of an Arnoldi-like algorithm
based on snapshots only.

This idea is based on the fact that the action of A on a set of column vectors V can — for a sufficiently
large number of column vectors — be represented by a linear combination H of the same set of vectors.
In other words, the vectors are assumed to eventually become linearly dependent. Mathematically, this
can be expressed as
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AV = VH + reT
n (3)

with r as the residual and en as the n-th unit vector. We will take advantage of this same idea (the
eventual linear dependence of the column vectors) but will apply it to a sequence of snapshots directly

rather than to an orthonormalized basis.
Taking a set of n time-resolved (based on the Nyquist criterion) flow field measurements, separated

in time by a constant step ∆t, and introducing the following notation

V
n
1 = {v1,v2, . . . ,vn} (4)

we assume a linear map A that maps a given measurement vj onto the subsequent one vj+1, that is,
vj+1 = Avj , thus generating a sequence as in (1). For a sufficiently long sequence, we invoke linear
dependence of the snapshots and represent the n-th snapshot by a linear combination of the previous
n − 1 snapshots. This is equivalent to the statement (see [20])

AV
n−1

1 = V
n
2 = V

n−1

1 S + reT
n−1 (5)

which is reminiscent of (3), except that the orthonormalized basis V in (3) has been replaced by the
matrix of measurements V

n−1

1 . Consequently, the upper Hessenberg matrix H in (3) is replaced by the
matrix S. The unknown matrix S is determined by minimizing the residual r which is equivalent to
optimally expressing the n-th snapshot vn by a linear combination of {v1, ...,vn−1} in a least-squares
sense. From (5) we obtain a least-squares problem for S of the form

S = argmin
S

‖Vn
2 − V

n−1

1 S‖ (6)

which can easily be solved using a QR-decomposition of V
n−1

1 . Once S has been determined, its eigen-
values and eigenvectors can be computed which, in turn, result in the dynamic modes of the underlying
snapshot sequence together with their temporal behavior (contained in the eigenvalues of S). The eigen-
vectors of S contain the coefficients of a specific dynamic mode expressed in the snapshot basis V

n−1

1 .
The eigenvalues of S represent the mapping between subsequent snapshots: unstable eigenvalues are
given by a modulus greater than one (i.e., are located outside the unit disk); stable eigenvalues have
a modulus less than one (i.e., can be found inside the unit disk). For applications in fluid dynamics,
it is common to transform the eigenvalues of S using a logarithmic mapping, after which the unsta-
ble (stable) eigenvalues have a positive (negative) real part. The procedural steps for computing the
dynamic mode decomposition are given in Algorithm 1. Given a sequence of n snapshots ∆t apart in
time, two data matrices V

n−1

1 and Vn
2 are formed that contain the first (n−1) snapshots and the same

sequence shifted by ∆t, respectively. A QR-decomposition of the first sequence is used to solve the
linear least square problem (6). The final step consists in computing the eigenvalues and eigenvectors of
the matrix S, transforming the eigenvalues from the time-stepper format to the format more commonly
used in stability theory, and recovering the dynamic modes from weighing the snapshot based by the
eigenvectors of S. The analysis of a data sequence, generated by a general nonlinear dynamical system,
by a linear snapshot-to-snapshot mapping is linked to Koopman analysis [12,15] which has recently
been extended and applied to fluid mechanical problems, such as direct numerical simulations of a jet
in crossflow [19].

The above algorithm is related to other well-known decompositions of flow fields. The matrix S can
also be obtained from computing the cross-correlation of the data sequences V

n−1

1 and Vn
2 over one time-

step, which is equivalent to solving the above least-squares problem (6) by using the normal equation
formulation. In this formulation, a connection to the principal interaction and oscillation patterns, a
common technique in atmospheric fluid dynamics (see, e.g., [6,23]) can be made. In a different but
related attempt, a link to the proper orthogonal decomposition can be established, since the correlation
between the proper orthogonal modes and their equivalents propagated over one time-step yields a
low-dimensional matrix that is unitarily similar to our matrix S (see [21] for more details). From this
last statement, it should become evident that, contrary to the proper orthogonal decomposition, the
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Algorithm 1 dynamic mode decomposition

Input: a sequence of n snapshots {v1,v2, ..., vn} sampled equispaced in time with ∆t
Output: dynamic mode spectrum λj and associated dynamic modes DMj with j = 1, ..., n− 1

V
n−1
1 ← {v1,v2, ..., vn−1}

V
n
2 ← {v2,v3, ..., vn}

[Q, R]← qr(Vn−1
1 , 0)

S← R−1QHVn
2

[X, D]← eig(S)

λj ← log(Djj)/∆t

DMj ← V
n−1
1 X(:,j)

dynamic mode decomposition contains not only information about coherent structures, but also about
their temporal evolution.

Since at no stage of the algorithm the system matrix A is needed, various extensions and attractive
features of the algorithm should be noted. No specific spatial arrangement of the sampled data is
assumed, and the processing of subdomain data, i.e., data extracted only in a small region of the
complete flow domain, as well as the processing of unstructured data is possible. This feature allows
to probe a subregion of the flow as to the presence of a specific mechanism. For example, a jet in a
crossflow can be analyzed by extracting data from the shear layer atop the counter-rotating vortex pair
or by extracting data in the wake of the jet [3,19]. Either data-set will yield different flow features, time-
scales and spatial patterns. We will demonstrate the extraction of flow features from subdomains in the
example of an axisymmetric helium jet (see §3.1). It should also be mentioned that the measurements
vj may contain a wide variety of the quantities that describe the dynamics of the flow, for example,
velocity fields from PIV-measurements or colormaps from high-speed visualizations. These quantities
may even be combined into a composite state vector, such as, e.g., in the simultaneous measurement
of fluid velocities by PIV and acoustic radiation by a microphone array in the farfield.

Another attractive feature is the analysis of spatially evolving data. In many applications, the de-
scription of a fluid instability in a spatial framework is more appropriate than in a temporal framework.
Again, since the system matrix A is not formed, but rather extracted from the data set, a simple reorga-
nization of the data sequence in space rather than time will produce a low-dimensional representation
of a spatial evolution operator that optimally approximates the mapping of the flow field from one
spatial station to the next. The resulting eigenvalues give spatial growth/decay rates and associated
spatial frequencies. For further details and examples of subdomain and spatial analysis using the above
algorithm the reader is referred to [21].

When processing data sequences by the above DMD-algorithm, a distinction has to be made as to
the underlying process. If the snapshots stem from a linear process (for example, a linearized numerical
simulations), the dynamic modes extracted from the data sequence coincide with the results of a
linear global stability analysis. In this case, the DMD-algorithm (see equation (5)) provides the same
results as the classical Arnoldi method (see equation (3)). The DMD-spectrum converges toward the
eigenvalues of the linear stability matrix. On the other hand, if the snapshots stem from a nonlinear
process, as is the case for most experiments, the dynamic modes represent the coherent invariant
structures of the best linear map from one snapshot to the next. For sufficiently long data sequences,
only neutrally stable structures should be found, since instabilities will have saturated and stable
(decaying) structures will have vanished. In this case, the DMD will detect the dominant frequencies
and associated spatial structures in the flow and separate the relevant from the irrelevant flow features.
When compared with proper orthogonal decomposition, we can state that POD modes enforced spatial

orthogonality (decorrelated structures) while keeping multiple frequencies in the evolution of each
individual POD mode, whereas DMD modes are temporally orthogonal (pure frequencies) but show,
in general, spatial non-orthogonality. For experimental data from a saturated nonlinear process, the
extraction of pertinent frequency information and its associated structures may be more critical than
an energy ranking of spatially decorrelated structures. For shorter data sequences, or transient fluid
processes, stable and unstable structures can be identified, and the interpretation of their relevance
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has to be performed more carefully; the content of a particular structure (together with its temporal
behavior) in the original data sequence can aid in the distinction of dynamically important and noisy
flow features. Along this line, it should be mentioned that the dynamic mode decomposition is a robust
tool to identify prevalent frequencies and coherent structures, even in the presence of experimental
uncertainties, measurement errors or environmental noise.

3 Applications

We will demonstrate the dynamic mode decomposition technique on two examples. These examples
have been chosen to represent experimental data of various degrees of informational content. The first
example, a helium jet, uses Schlieren techniques to visualize the dynamics of the fluid structure; thus,
only a scalar field — proportional to the density gradient and quantified by its location on a grey-scale
colormap — is being processed. The second example, a forced and unforced axisymmetric jet, will
process fully time-resolved PIV-data; in this case, complete velocity information of the flow field is
available for the decomposition.

3.1 Dynamic mode decomposition of a helium jet

The first example concerns a low-density helium jet exhibiting a global instability. The jet has been
produced using a contoured nozzle of diameter D = 19 mm directed vertically upwards and injected
into quiescent air at temperature T = 20o C and pressure p = 1 atm. High-speed videos of the flow
have been captured using a PHANTOM V4.2 CMOS camera combined with a Z-type Schlieren setup
(based on a 5 mm dia. white LED light source) which used a horizontal knife-edge to properly resolve
vertical density gradients. The flow has been sampled at a framerate of 1600 frames per second with
a 580 µsec exposure time and a spatial resolution of 512× 512 pixels. A typical sequence of the jet for
a density ratio S = ρjet/ρamb = 0.14 and a Reynolds number of Re = 940 (based on the jet velocity
and the nozzle diameter) is shown in Figure 1 where the first snapshot (Figure 1a) also contains the
size and location of our interrogation window for the subsequent DMD-analysis. At these parameter
settings the axisymmetric jet is characterized by a pocket of absolute instability near the nozzle exit
(see [16]) which manifests itself in a self-sustained, axisymmetric, oscillatory behavior of the jet.
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Fig. 1 A selection of Schlieren snapshots of a low-density helium jet with a density ratio of S = 0.14 and a
Reynolds number of Re = 940. The window for which time-resolved data is extracted is indicated in blue in
the leftmost snapshot.

The visualized density gradients have been mapped onto a grey-scale colormap and parameterized as
to their location on this map. A sequence of frames then constitutes a quantified scalar field proportional
to the density gradient which can then be processed by the dynamic mode decomposition. Taking
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advantage of the fact that the decomposition can equally be applied to the full flow field or a smaller
interrogation window, we invoke the symmetry of the flow and extract data from a subdomain indicated
in Figure 1(a). In addition, it is important to mention that the projection of an axisymmetric density
profile onto a two-dimensional colormap plane does not influence the temporal dynamics that will be
extracted from the data-sequence by the dynamic mode decomposition.

The reshaped snapshots form a vector basis in which the dynamics of the flow, i.e., the mapping
from one image to the next, is approximated. This mapping which is, in general, a N × N matrix
A with N as the total number of pixels in each image is then projected onto the vector basis Vn−1

1

to yield a lower-dimensional (n − 1) × (n − 1) system matrix S (with n as the number of processed
snapshots; in our case n = 100) governing the coefficients of a linear expansion in the vector basis. In
particular, the eigenvalues of S will approximate some of the eigenvalues of A.

The spectrum extracted from the above sequence of snapshots is displayed in Figure 2. It shows
qualities of a typical spectrum for an advection-diffusion dominated flow. The eigenvalues show a
strong alignment along the horizontal neutral line, but are overall damped. An eigenvalue at the
origin (labelled a) is present which represents the steady state; its corresponding eigenvector displays
the mean flow field. This feature is also present in a POD analysis of the same flow field: the first,
most dominant, right singular vector of the snapshot basis consists of the mean flow (see [2]). The
least stable modes then fall on parabolic arcs, denoted by b through e in Figure 2. Since over the
temporal observation period the flow is in an equilibrated state, we do not expect and observe any
unstable eigenvalue. For even longer observation periods and data sequences, the damping rates of
the dominant dynamic modes will approach the neutral line. The color coding and symbol size of the
eigenvalues represent a measure of coherence of the associated modes (similar to the energy content
of POD modes) and help in the separation of relevant structures from noise-contaminated ones. This
coherence measure is computed by projecting individual dynamic modes onto energy-ranked proper
orthogonal modes (except the mean flow); the resulting coefficients of this projection give a ratio of
large-scale to fine-scale structures. This feature adds information about spatial coherence and scales
to the temporal information contained in the spectrum.
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Fig. 2 DMD-spectrum of a helium jet for density ratio S = 0.14 and Reynolds number Re = 940. The
coloring and marker size indicate the spatial coherence of the associated dynamic modes (see text; red, larger
symbols: large-scale structures; blue, smaller symbols: small-scale structures).

Figure 3 presents five dynamic modes associated with the labeled eigenvalues in Figure 2. As
mentioned before the mode corresponding to label a represents the mean flow, while the higher modes
b through e increasingly show the presence of small-scale (but coherent) structures. The support of the
dynamic modes is clearly located at the diverging outer edge of the jet where vortex roll-up, mixing
and entrainment processes are prevalent.

A characteristic slanted pattern of the oscillatory and slightly damped dynamic modes is clearly
visible and conforms to findings from numerical stability analyses of linearized flows [7,17]. Only the
real part of the dynamic modes has been shown in Figure 3; the corresponding imaginary part is
phase-shifted by 90o which, when multiplied by the corresponding temporal dynamics (contained in
the eigenvalue), produces an advective-diffusive process for each individual dynamic mode structure.

A second case is concerned with a different parameter regime. The density ratio S = ρjet/ρamb has
been substantially increased to S = 0.5 and a Reynolds number of Re = 1850 has been chosen. At these
parameter settings, a primary axisymmetric absolute instability is still present, but somewhat weaker.
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(a) (b) (c) (d) (e)

Fig. 3 Five representative dynamic modes (real part only) associated with the spectrum in Figure 2.

Again, we first inspect a selection of snapshots (see Figure 4) to conclude that a more pronounced
vortex roll-up stage and a less rapid breakdown into turbulent fluid motion can be observed. These
features should also be reflected in the shape of the DMD-spectrum as well as in the shape of the
dynamic modes. As before we will not concentrate our analysis on the entire flow domain but rather
extract data from a smaller window as indicated in Figure 4(a); as before, n = 100 snapshots from this
subdomain will be processed.
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Fig. 4 A selection of Schlieren snapshots of a low-density helium jet with a density ratio of S = 0.5 and a
Reynolds number of Re = 1850. The window for which time-resolved data is extracted is indicated in blue in
the leftmost snapshot.

The spectrum extracted from the data via the low-dimensional system matrix S is presented in
Figure 5. It is again dominated by elements reminiscent of an advection-diffusion spectrum. In con-
trast to the previous case, though, more arc-like eigenvalue clusters are visible, a feature that is often
observed in the numerical calculation of global spectra. Structures within such an eigenvalue arc con-
tain fluid elements that show similar support in the flow domain but are characterized by different
local wavenumbers (see, e.g., [4]). In superposition, they often form traveling coherent structures or
wavepackets.

Four selected dynamic modes have been extracted by concentrating on small damping rates and
spatial coherence. This choice is motivated by the assumption that within the sampling period the
corresponding structures were persistent, observable and representative of the large-scale features of
the flow. Nevertheless, the possibility of a full analysis by superposing coherent structures weighted by
their extracted exponential behavior should be considered. The mode corresponding to the eigenvalue
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Fig. 5 DMD-spectrum of a helium jet for density ratio S = 0.5 and Reynolds number Re = 1850. For an
explanation of the color-code and the symbol size the reader is referred to the text.

at the origin again captures the mean flow and is omitted this time. The sequence of dynamic modes
presented in Figure 6 illustrates a dominant scaling between the local scale of the flow feature and its
temporal frequency, suggesting that the dynamic mode decomposition has succeeded in extracting a
valid (though approximate) dispersion relation from the experimental data. The support of the modes
is clearly concentrated near the edge of the mixing layer which becomes more evident as the scales
becomes smaller; this is a consequence of the prevalence of density gradients near the edge of the
helium jet.

(a) (b) (c) (d)

Fig. 6 Four representative dynamic modes (real part only) associated with the spectrum in Figure 5.

Slanted structures are again observed, and the appearance of small-scale structures (linked to the
breakdown of the jet) is more prevalent further downstream of the jet nozzle. This is in accordance
with observation and physical intuition.

3.2 Response of an axisymmetric jet to external forcing

Whereas the previous example demonstrated the possibility of extracting coherent dynamic behavior
from a sequence of snapshots that visualize (by a pixelized colormap proxy) the flow dynamics, the
next example will be based on fully time-resolved measurements of the fluid velocities by particle-
image velocimetry (PIV). This type of measurements is significantly more advanced and involved and
yields detailed information about the flow dynamics that rivals numerical simulations of the same flow
configuration.

A sketch of the experimental setup is shown in Figure 7. A jet emanates from a plenum by passing
through a screen followed by a conical contraction. A loudspeaker inside the plenum is used to impose
a time-harmonic acoustic signal on the jet. A quadratic interrogation area for the time-resolved PIV
measurements is located 10 mm downstream of the nozzle exit and measures 54.7 mm in the streamwise
and normal coordinate direction. The fluid is seeded with PIV tracer particles (oil droplets 2-3 µm in
size), and the interrogation window is resolved by a 63 × 63 grid. Individual snapshots are separated
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by 0.333 msec which results in a Nyquist frequency of 1500 Hz, well above the characteristic frequency
given by the jet velocity and jet diameter. The jet diameter is 30 mm and the center velocity of the
jet is 7.5 m/sec, yielding a Reynolds number based on these quantities of Re = 14767. Once a time-
resolved snapshot sequence is available, it can be processed by the DMD-algorithm to reduce the full
dynamics captured in the snapshots down to a lower-dimensional set that reproduces the original data
in an optimal manner. Both velocity components will be taken into account, even though a single
component would suffice to determine the dynamic characteristics. Each snapshot thus consists of
2 × 63 × 63 = 7938 elements; a total of n = 101 snapshots have been processed. Furthermore, two
cases will be considered and contrasted: the dynamics of an axisymmetric jet evolving naturally, and
the dynamics of the same jet under harmonic external excitation of a given frequency.

To an observer the snapshot sequence of the forced and unforced jet differ only slightly which makes
the detection of the response behavior of the jet to external excitation rather difficult. An analysis based
on the proper orthogonal decomposition (POD) also has difficulties in establishing a clear difference
between the two cases: spatial changes in the modal shapes are detectable, but a characterization of the
changed temporal response dynamics is difficult. It is possible to extract a scalar signal from the jet and
Fourier-transform the signal which should show the presence of a frequency response to an externally
imposed forcing. This procedure, however, cannot identify a spatial structure that corresponds to the
response. On the other hand, the spectrum obtained from the dynamic mode decomposition uncovers
a marked difference between the two cases (see Figure 8); the corresponding dominant dynamic modes
illustrate the associated spatial structures (see Figure 9 and 10).

Loudspeaker

g
ri
d

PIV

Fig. 7 Sketch of the experimental setup for the forced/unforced axisymmetric jet.

The unforced spectrum shows a coherent structure with negligible damping at a frequency of
approximately λi/2π = 110Hz (label (a) in Figure 8), equivalent to a Strouhal number of 0.44; this
value falls within the range of ’preferred’ Strouhal numbers given in [10]. Higher harmonics are not
present in a significant way. The situation is markedly different for the spectrum of the forced jet. In
this case, the natural frequency can no longer be detected by the dynamic mode decomposition. In its
place, the frequency of the forcing (ff = 150Hz) and a higher combination frequency can be observed
(label (B) and (C) in Figure 8). It appears that for the experimental parameters, the jet rather easily
adopts the frequency of the forcing, showing an appreciable amount of receptivity to harmonic external
forcing. In this sense, the jet behaves as a noise amplifier rather than a self-sustained oscillator [9].

Whereas the response behavior of the axisymmetrix jet to harmonic forcing could have been quanti-
fied by a Fourier-analysis, additional information can be gained from the dynamic mode decomposition
by examining the change in the structures associated with the above-mentioned eigenvalues. This is
shown in Figures 9 and 10, respectively. For the unforced case, medium-scale structures located at the
edge of the mixing layer can be observed. These structures are mainly responsible for the roll-up of the
outer shear layer and the entrainment of quiescent fluid into the jet. The size and structure of these
fluid elements can be used to compute a first estimate of the amount of mixing. It is also noticeable
that the vortical structures tend to become larger-scale as we move downstream; rather little dynamic
features are observed near the nozzle (left side of the PIV interrogation window). The forced case
shows distinct differences: in this case, large-scale structures dominate the mixing/entrainment pro-
cess further upstream than in the unforced case (compare Figures 9(b) and 10(B)) and are expected to
significantly change the roll-up of the outer shear layers. From this analysis it can be concluded that the
primary effect of forcing is concentrated near the nozzle exit where oscillatory vortical fluid elements
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Fig. 8 DMD-spectrum of an unforced (top) and harmonically forced (bottom) axisymmetric jet.

(a) (b) (c)

Fig. 9 Selected dynamic modes of an unforced axisymmetric jet. The modes correspond to the labels in
Figure 8(a).

(eigenvalue (B) in Figure 8 and associated mode in Figure 10(B)) are introduced that dominate the
forced dynamics. For the unforced jet, the decomposition shows a more typical behavior characterized
by the progressive roll-up of the outer shear layer in the downstream direction.

4 Summary and conclusions

The extraction of global flow features from a sequence of experimental data has been attempted by
computing a low-dimensional representation of the flow dynamics directly from the experimental data
without recourse to an underlying model. This purely data-based decomposition method produces
global modes, if the sequence has been generated by a linearized evolution equation (in the case
of numerical simulations), or dynamic modes, if the sequence stems from measurements taken from
physical experiments. The data-based nature of the algorithm allows the focus on specific regions of the
flow where interesting and relevant dynamic processes take place and the dissection of complex fluid
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(A) (B) (C)

Fig. 10 Selected dynamic modes of a harmonically forced axisymmetric jet. The modes correspond to the
labels in Figure 8(b).

phenomena into localized dominant features. The method allows both temporal and spatial analyses;
in this article, only results from a temporal analysis have been presented.

In the case of visualizations by a passive scalar field, the results from Schlieren pictures of a low-
density helium jet have shown typical modal structures on the shear layer of the jet that exhibit the
commonly known scaling of temporal frequencies and spatial wavenumbers of the associated modal
structure.

When time-resolved PIV-data have been used, the dynamic mode decomposition could clearly
distinguish between the flow fields of a forced and unforced axisymmetric jet. This difference was
reflected in the temporal spectrum as well as in the spatial structure of the associated least damped
dynamic modes.

This type of decomposition technique is hoped to provide a valuable tool in the experimentalist’s
arsenal to express the dominant behavior of the flow under investigation in terms of a few coherent
structures and their temporal (and/or spatial) characteristics. It is equally hoped that this type of
decomposition will help in providing more insight into the key physical mechanisms of a variety of
flows that are studied by experimental (or even numerical) means.
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