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ABSTRACT

The flow in a cylindrical cavity driven by a rotating lid
undergoes a sequence of bifurcations as the Reynolds number
is increased. It is a well-known and well-studied fluid system
and a common benchmark for the identification of emerging
coherent structures and for the quantification of bifurcation
points. Time-resolved particle-image velocimetry (PIV) data
have been taken in a cross-sectional plane, and a sequence
of snapshots has then been processed by two algorithms:
the Dynamic Mode Decomposition (DMD) and the Proper
Orthogonal Decomposition (POD).

1. INTRODUCTION

The decomposition of complex flow problems into coherent
structures is a common technique to reduce a complicated flow
behavior to a simpler one and to gain insight into its underlying
mechanisms. The manner in which this decomposition is
accomplished and the exact definition of coherence is equally
dependent on the flow configuration as well as the specifics of
the relevant structures to be extracted (e.g. vortical structures,
acoustic waves, mixing indicators).

In this article we will concentrate on two complementary
manners of decomposing the flow fields from experimental
measurements into coherent structures: the proper orthogonal
decomposition (POD) and the Dynamic Mode Decomposition
(DMD).

The proper orthogonal decomposition (POD), also referred to in
other fields of application as the principal component analysis
(PCA), the empirical orthogonal function (EOF) analysis, or the
Karhunen-Loève (KL) decomposition, has its origins in signal
processing, made its way into fluid dynamics applications in
the seventies and eighties [7, 14, 2] and is now a common and
standard tool to analyze fluid fields (measured or computed).
Over the years, various improvements have been made such
as the snapshot technique [14] or the generalization to the
bi-orthogonal proper decomposition (BOD) [1, 5]. In its
essential form the proper orthogonal decomposition uses the
spatial (or temporal) correlation matrix and computes its
eigenfunctions, thus decorrelating the structures contained in
the snapshots. The extracted structures (eigenfunctions)are
interpreted as the building blocks of the analyzed flow but, in
addition, are often used as a Galerkin basis for model reduction
or control efforts, even in the nonlinear regime [9].

The Dynamic Mode Decomposition (DMD) is a recent
extension of the classical Arnoldi technique [3, 4, 15, 6]
to accommodate a data-based rather than a model-based
framework [13, 12, 11]. A high-degree polynomial is fit

to a Krylov sequence of flow fields, which are assumed
to become linearly dependent after a sufficient number of
snapshots have been taken. When this point is reached, a
general linear dependence among the snapshots is assumed
and the (unknown) snapshot-to-snapshot mapping is expressed
within the snapshot basis. The optimal linear combination of the
snapshots is equivalent to a low-dimensional representation of
the system dynamics, and all further analysis (such as stability
and receptivity computations) can be applied to it.

The difference between the proper orthogonal decomposition
and the Dynamic Mode Decomposition lies, respectively, in
the use and lack of an averaging step to process the data.
In the former case, the POD is based on a time-averaged
spatial correlation matrix, whereas in the latter case the
DMD approximates the temporal dynamics by a high-degree
polynomial.

After more background on either method, we will employ
the POD- and DMD-analysis to time-resolved particle-image
velocimetry data from flow in a lid-driven cylindrical cavity.

2. BACKGROUND

Starting point for either the POD- or DMD-analysis is a
temporal sequence ofN data fieldsv j written as

VN
1 = {v1,v2, ...,vN} . (1)

The spacing between each snapshot in the above sequence is
assumed to be constant. Each flow fieldv j could contain
scalar or vector data in any number of spatial dimensions.
Furthermore, subdomains of the entire fluid domain may be
treated in isolation, i.e., without regard for the dynamicsin the
rest of the experimental or computational domain.

The proper orthogonal decomposition proceeds by forming
the spatial correlation matrixC from the above sequenceVN

1
according to

C =
1
N

VN
1

(

VN
1

)H
. (2)

More complex integration schemes can be used but do not add
significantly to what follows below. The correlation matrixis
then decomposed into its eigenvaluesλ and eigenvectorsΦ

CΦ j = λ jΦ j. (3)

Due to the symmetry of the correlation matrixC the eigenvalues



λ j are real and describe the energy content of the coherent flow
structure represented by the eigenvectorΦ j (see [7]). For the
same reason, the set of eigenvectors is orthogonal which means
that each POD-modeΦ j is statistically decorrelated from any
other.

If temporal (rather than spatial) coherence is required, the
temporal correlation matrixC̃ = 1

M (VN
1 )HVN

1 (with M as
the number of degrees of freedom in space) is formed and
decomposed accordingly [1, 5]. Both points of view can be
addressed by a singular value decomposition ofVN

1 where the
spatially coherent structures are given by the right singular
vectors and the temporally coherent structures by the left
singular vectors.

As mentioned above, the Dynamic Mode Decomposition
(DMD) uses the classical Arnoldi idea to express the mapping
underlying the snapshot basis

v j+1 = Av j (4)

by a linear combination of the available data fieldsVN−1
1 .

Mathematically, this translates into the approximate matrix
equation

AVN−1
1 ≈ VN−1

1 S (5)

which is reminiscent of the Arnoldi decomposition where the
action ofA on an orthonormalized basis is given by the product
of the same basis and a Hessenberg matrix. In our case, we
solve directly the equation above, taking advantage of the fact
that S is of companion type [10]. The eigenvalues ofS (also
known as Ritz values) approximate some of the eigenvalues
of A; the eigenvectors ofS contain the coefficients for the
reconstruction of dynamic modes expressed within the snapshot
basis.

It is important to realize that the Dynamic Mode Decomposition
does not contain any averaging process, neither in time nor in
space. As a consequence, the temporal and spatial information
is fully preserved. In the formulation above, the temporal
information is given by the real and imaginary part of the
eigenvalues ofS, with the real part as the growth/decay rate and
the imaginary part as the frequency of the associated dynamic
mode. The spatial information is contained in the corresponding
dynamic mode, i.e., the product of the snapshot basis and the
chosen eigenvector ofS.

Since the snapshot-to-snapshot mappingA is never formed but
rather identified from the data sequence, a simple rearrangement
of the flow fields can yield a spatial rather than a temporal
analysis. In this case, dynamic modes that evolve, e.g., in
the streamwise direction according to a linear mechanism are
detected by the Dynamic Mode Decomposition. For further
details, the reader is referred to [11]. Moreover, flow structures
can also be extracted from image-based flow visualizations
(such as a sequence of Schlieren images); see [12].

3. FLOW IN A LID-DRIVEN CYLINDRICAL CAVITY

Flow of an incompressible fluid in a lid-driven cylindrical cavity
is considered [8]. The velocity field in a cross-sectional plane
is measured using particle-image velocimetry (see Figure 1for
a sketch of the flow configuration and the experimental setup).

The two techniques introduced above will then be applied
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Figure 1 : Sketch of geometry and experimental setup of flow in
a lid-driven cylindrical cavity.

to a temporally equispaced sequence of 100 particle-image
velocimetry (PIV) samples taken during 41 experiments ranging
from Re = 2714 toRe = 6333. Within this range, numerous
bifurcations are observed. In particular, the vortex core
undergoes a sequence of instabilities, and axial vortices
confined to the outer wall regions are common features of this
type of flow.

The results of the two decompositions are shown in Figure 2
where the left column contains the most dominant POD-mode
(after the mean flow) and the right column depicts the least
stable dynamic mode (again, besides the mean flow). The
chosen Reynolds numbers (from top to bottom) areRe =
4433, 5067, 5429, 5971, 6333.

Marked differences are visible for the two types of flow
decompositions. The POD technique mainly favors the
vortical flow in the center of the cavity where the axial mean
vortex is prone to vortex-breakdown instabilities. The DMD
analysis, on the other hand, extracts in most cases the axial
vortices near the cylinder walls. It is clear that the two
decomposition techniques emphasize different flow quantities
in their identification of coherent structures. Whereas the
proper orthogonal decomposition puts a heavy weight on the
energy content of each structure and thus ranks the flow in the
center of the cavity as more coherent than the axial vortices
near the wall (which appear as higher-order POD-modes), the
Dynamic Mode Decomposition (DMD) identifies the structures
that are most persistent in their dynamics over the observedtime
horizon. This latter ranking is independent of the energy content
of the identified structures.

To recover the temporal dynamics of the various POD-modes
a projection of the full dynamics contained in the snapshot
sequence onto one or a collection of POD-modes is commonly
applied. The coefficients can then be analzyed using Fourier
analysis or other, more sophisticated spectral techniques.

Scanning through the 41 data sets ranging fromRe = 2715 to
Re = 6333 we can perform a more comprehensive parameter
study and plot the frequencies of the most dominant and
coherent dynamic modes resulting from a DMD-analysis of
respective sequences of 100 snapshots. The results are shown
in Figure 3. A marked alignment of the frequencies of
the identified dynamic modes along lines can be observed.
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Figure 2 : Left column: dominant modes from a proper
orthogonal decomposition (POD); right column: least
stable mode from a Dynamic Mode Decomposition.
The Reynolds numbers, from top to bottom, are
Re = 4433, 5067, 5429, 5971, 6333.

The least stable of the multiple branches is indicated in
red. A clear cascade into higher frequencies is noticeable,
which appear at discrete Reynolds numbers. The two lowest
branches are associated with coherent structures in the center
of the cavity related to the dynamics of the vortex core.
Higher branches (at higher frequencies) correspond to axial
vortices confined to the cylinder wall (as shown in the right
column of Figure 2). The appearance of new branches as the
Reynolds number is increased indicates bifurcation pointsin the
frequency-Reynolds number parameter space. An analysis ofa
correspondance of the above results with alternative techniques
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Figure 3 : Frequency of the least stable coherent dynamic modes
as a function of Reynolds number for flow in a lid-driven
cylindrical cavity. The least stable dynamic mode is indicated
in red.

and numerical computations is left for a future effort.

4. CONCLUSIONS

The flow in a lid-driven cylindrical cavity exhibits a complex
bifurcation behavior characterized by the appearance of vortical
motion in its center region and near to its wall. An experiment
has been set up to establish a data base of time-resolved
particle-image velocimetry (PIV) sequences for a wide range
of Reynolds numbers covering multiple bifurcations.

Two complementary decomposition techniques have been
applied to the data: the proper orthogonal decomposition
(POD) based on the spatial correlation matrix gathered
from the snapshots, and the Dynamic Mode Decomposition
(DMD) extracting a low-dimensional evolution matrix from the
temporally equi-spaced data sequence.

Both techniques identify bifurcation points (i.e., the appearance
of new coherent patterns) as the Reynolds number is increased.
Whereas the POD concentrates on the more energetic structures
of the flow (mainly in the center of the cavity), the
DMD-technique isolates the less-energetic but more unstable
axial vorticity patterns close to the outer wall of the cylinder.
A bifurcation chart, plotting the first few least stable dynamic
modes, confirms the discontinuous appearance of higher
frequencies associated with modified spatial structures.

This study demonstrates the complementarity and the
differences of the two decomposition techniques and introduces
the Dynamic Mode Decomposition (DMD) as a new
quantitative flow analysis tool to assess the dynamic behavior
of fluid flows represented by experimentally measured (or
numerically determined) data sequences.

ACKNOWLEDGMENTS

Support for the first author from theAgence Nationale de la
Recherche (ANR) through their “chaires d’excellence” program
and from the Alexander-von-Humboldt Foundation is gratefully
acknowledged.



REFERENCES

[1] Aubry, N. (1991) On the hidden beauty of the proper
orthogonal decomposition.Theor. Comp. Fluid Dyn., 2,
339–352.

[2] Berkooz, G., Homes, P. & Lumley, J.L. (1993) The proper
orthogonal decomposition in the analysis of turbulent
flows.Ann. Rev. Fluid Mech., 25, 539–575.

[3] Edwards, W.S., Tuckerman, L.S., Friesner, R.A.
& Sorensen, D.C. (1994) Krylov methods for the
incompressible Navier-Stokes equations.J. Comp. Phys.,
110, 82–102.

[4] Greenbaum, A. (1997)Iterative Methods for Solving Linear
Systems, SIAM Publishing, Philadelphia.

[5] Hemon, P. & Santi, F. (2007) Simulation of a spatially
correlated turbulent velocity field using biorthogonal
decomposition.J. Wind Eng. Ind. Aerodyn., 95, 21–29.

[6] Lehoucq, R.B. & Scott, J.A. (1997) Implicitly restarted
Arnoldi methods and subspace iteration.SIAM J. Matrix
Anal. Appl., 23, 551–562.

[7] Lumley, J.L. (1970) Stochastic Tools in Turbulence,
Academic Press.

[8] Meyer, K.E., Sorensen, J.N., Mikkelsen, R.F., Watz,
B.B. (2008) Frequency and flow structure detection in a
cylindrical cavity using POD.14th Int. Symp. on Appl.
Laser Techn. to Fluid. Mech., Lisbon, Portugal.

[9] Noack, B.R., Afanasiev, K., Morzynski, M., Tadmor, G. &
Thiele, F. (2003) A hierarchy of low-dimensional models
for the transient and post-transient cylinder wake.J. Fluid.
Mech., 497, 335–363.

[10] Ruhe, A. (1984) Rational Krylov sequence methods for
eigenvalue computation.Lin. Alg. Appl., 58, 279–316.

[11] Schmid, P.J. (2009) Dynamic Mode Decomposition
of numerical and experimental data.J. Fluid. Mech.,
(submitted).

[12] Schmid, P.J., Li, L., Juniper, M.J. & Pust, O. (2009)
Decomposition of experimental data into dynamic modes.
Theor. Comp. Fluid. Dyn., (submitted).

[13] Schmid, P.J. & Sesterhenn, J.L. (2008) Decomposition
Mode Decomposition of numerical and experimental data.
Bull. Amer. Phys. Soc., San Antonio/TX.

[14] Sirovich, L. (1987) Turbulence and the dynamics of
coherent structures.Quart. Appl. Math., 45, 561–590.

[15] Trefethen, L.N. & Bau, D. (1997)Numerical Linear
Algebra, SIAM Publishing, Philadelphia.


