
8TH INTERNATIONAL SYMPOSIUM ON PARTICLE IMAGE VELOCIMETRY- PIV09
Melbourne, Victoria, Australia, August 25-28, 2009

PIV- and image-based flow analysis of a steady and pulsed jet u sing
Dynamic Mode Decomposition

P. J. Schmid 1 and O. Pust 2

1Laboratoire d’Hydrodynamique (LadHyX), Ecole Polytechnique, F-91128 Palaiseau, FRANCE
peter@ladhyx.polytechnique.fr

2Dantec Dynamics, DK-2740 Skovlunde, DENMARK

ABSTRACT

Time-resolved particle-image velocimetry data of an
axisymmetric jet have been used in conjunction with a
novel data-analysis technique known as the Dynamic Mode
Decomposition (DMD) to extract flow features that contribute
significantly to the principal dynamics of the jet. In contrast
to other decomposition techniques (such as POD), our study
reveals coherent structures in the flow together with their
frequency and growth/decay rates. Acoustic forcing has been
applied, and the response behavior has been decomposed using
DMD. Significant differences in the DMD-spectrum and the
associated modal structures can be observed between the forced
and unforced jet.

1. INTRODUCTION

The response of a flow to external excitation is a diagnostic tool
that can provide a wealth of information to practitioners and
theoreticians. Mathematically speaking, it provides the transfer
function of the system by linking an input signal to an output
response. By scanning over a range of frequencies, the linear
behavior of a system (or the linearized approximation of it)
can be extracted which provides first quantitative results on the
sensitivity to external excitation but also first suggestions on
how to best manipulate the flow.

In order to evaluate the response behavior of flows, it is
necessary to have a diagnostic tool to quantify and decompose
the fluid response. For numerical simulations of fluid flow
this step does not pose a problem. The spectral evaluation
of forced problems or, more recently, the computation of
resolvent norms (i.e., transfer function norms) has become
commonplace in the computational fluid dynamics community.
Even for large-scale applications, efficient algorithms are
readily available [4], even if they require iterative (Krylov
subspace) techniques or model reduction efforts. All these
techniques, however, require at some stage the knowledge ofa
discretized model, commonly in the form of the linearized fluid
equations. Matrix-vector multiplications, using the Jacobian
stability matrix and selected flow fields, are an integral part of
the available algorithms (see [1]) and are responsible for their
effectiveness and robustness.

For experimental settings, techniques that require an underlying
model are not attractive; only data is available in this case. The
question then arises if some or any of the above algorithms can
be modified to extract pertinent information from the flow by
using measurements only and by abandoning the necessity of
an explicit model. The Dynamic Mode Decomposition [8, 7, 6]
is a step in this new direction of “model-free” algorithms for
quantitative flow analysis.

2. BACKGROUND

Rather than assuming a model (described by the system matrix
A for a discrete formulation) for our flow situation, we focus
on a set of measurementsv which we gather in an equispaced
temporal sequence ofN snapshots, i.e.,

VN
1 = {v1,v2, ...,vN} . (1)

We then proceed by assuming a constant (or quasi-constant)
mapping from one snapshot to the next. This mapping shall
be calledA and is equivalent to the above-mentioned system
matrix for a linear flow. We then know that

AVN−1
1 ≈ VN

2 (2)

which states that each snapshot evolves into the subsequentone
under the action of the snapshot-to-snapshot mappingA. To
close this argument, we invoke the idea underlying the Arnoldi
technique [9, 2] and express the right-hand side of (2) as a linear
combination of the snapshot basisVN−1

1 which can be written
as

AVN−1
1 ≈ VN−1

1 S. (3)

It can easily be verified that the matrixS is of companion
type [5]. In other words, it can be determined by expressing
the last snapshotvN by a linear combination of all previous
snapshotsVN−1

1 s with s as the last column of the companion
matrix S.

Once the matrixS has been identified from the data, it can be
taken as a low-dimensional replacement of the system matrix
A. In particular, the stability or response behavior of our fluid
system can now be extracted, at least in an approximate manner,
from the matrixS.

The reliance on data only for the extraction of dominant
flow behavior by the dynamic mode decomposition has some
disadvantages but, by and large, overwhelming advantages.
First and foremost among the advantages is the applicability
of DMD to experimentally gathered data. This fact
introduces new and quantitative technology to the analysis
of experimental data, promising new insight into fluid
processes that can be better or efficiently measured than
simulated. Image-based visualizations using passive dye
tracers in conjunction with high-speed cameras can equally
be processed [7] as time-resolved particle-image-velocimetry
(PIV) data. In addition, the dissection of the entire flow field



into subdomains where localized instability mechanisms prevail
is possible [6], a feature that presents substantial challenges
for numerical simulations. It allows the breakup of multiscale
phenomena into their respective components. Furthermore,a
distinction between temporal and spatial dynamics — again
a difficult undertaking for computational investigations —is
less pronounced for a “model-free” algorithm since for neither
case a system matrix has to be formed; whether we perform a
temporal or a spatial analysis thus only depends on the manner
in which the measured data are processed. These significant
advantages come at the expense of a (minor) degradation in
convergence, as compared with the iterative algorithms that
require a system matrixA. However, by a small modification
of the above algorithm (see [6]) satisfactory convergence and
robustness can be achieved. In this sense, the advantages and
possibilities of the dynamic mode decomposition far outweigh
the minor limitations in its convergence properties.

3. RESULTS

To demonstrate the capabilities of the dynamic
mode decomposition we consider time-resolved
particle-image-velocimetry (TR-PIV) measurements of an
axisymmetric jet. In particular, two cases are considered:(i)
the dynamics of the jet under no external forcing, and (ii) the
response of the jet when subjected to acoustic excitation ofa
harmonic nature.
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Figure 1 : Sketch (a) and picture (b) of the experimental setup
for PIV measurements of an unforced and forced jet.

The experimental setup is sketched and displayed in Figure 1.
It consists of a jet emanating from a plenum by passing through
a screen followed by a conical contraction. Inside the plenum
a loudspeaker is installed that will imposed a time-harmonic
acoustic signal on the jet. The PIV interrogation area starts
10 mm downstream of the nozzle exit and extends 54.7 mm in
the streamwise and the transverse coordinate direction. The PIV
images have been resolved on a 63×63 grid and are separated in
time by 0.333 msec. The jet diameter is 10 mm and the center
velocity of the jet is 7.5 m/sec for the unforced case, slightly

less (7.4 m/sec) for the forced case. The forcing frequency has
been chosen as 140 Hz.

The snapshots obtained from the PIV-measurements have
been gathered and processed according to the DMD-algorithm
outlined above. The eigenvalues of the low-dimensional system
matrix S are displayed in Figure 2(a,b) for the unforced and the
forced case, respectively.
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Figure 2 : DMD-spectrum of (a) unforced and (b) forced jet
for the parameters given in the text. The symbol size (large to
small) and coloring (red to blue) of the eigenvalues indicate a
coherence measure of the associated dynamic mode.

In both cases, an eigenvalue at the origin is observed, indicating
the presence of a neutral and non-oscillatory structure. The
associated dynamic mode (not shown) corresponds to the mean
flow, i.e., the steady component in the snapshot sequence over
the sampled time interval.

For the unforced case (Figure 2a) a dynamic mode with an
inherent frequency of about 110 Hz appears to be dominant.
Higher modes near the neutral line do not appear. For the forced
case (Figure 2b) a different picture emerges: an eigenvaluewith
a frequency near the forcing frequency appears, together with a
second (mildly unstable) mode at a slightly higher frequency.
This seems to confirm that the jet is rather susceptible to
external forcing by tuning into the frequency of the outside
excitation.

The corresponding spatial structures of the inherent dynamics
and the forced response are given in Figure 3 and 4, respectively.
For the unforced case, a general tendency of a vortical structure
developing in the downstream direction on the outer shear layer
of the jet is observed; the perturbations identified by the DMD
have little or negligible support near the jet exit. In addition, no
precise streamwise scale can be detected, even though coherent



(a) λ = (−0.3642,106.79)

(b) λ = (−3.6862,144.57)

(c) λ = (−3.7007,177.05)

Figure 3 : Three representative DMD-modes for the unforced
jet, visualized by velocity vector plots.

vortices are present.

These facts should be contrasted with the forced case in which
a marked response in terms of a locked-in spatial scale (see,
in particular, Figure 4b) and a pronounced structure near the

(a) λ = (−3.4011.,128.46)

(b) λ = (−0.2648,151.51)

(c) λ = (0.5986,182.69)

Figure 4 : Three representative DMD-modes for the forced jet,
visualized by velocity vector plots.

nozzle can be seen. It appears that the acoustic forcing of
the jet has dramatically changed both the frequency and the
shape of its most relevant dynamic mode. Flows that show
a high susceptibility to external noise and excitation are often
referred to asamplifiers and should be contrasted to flows



that act asoscillators (i.e., flows that display a robust lock-in
to a self-sustained frequency relatively independent of the
external excitation). Even though a distinction between these
two flow cases has to be made by more rigorous arguments
(see [3]), the response to external forcing, as displayed inthe
two DMD-analyses, can already provide a first indication.

4. CONCLUSIONS

The Dynamic Mode Decomposition (DMD) — a new tool
of quantitative flow analysis based on the extraction of
dynamically revelant structures from a time-resolved sequence
of experimental (or numerical) flow fields — has been applied
to the case of an unforced and forced jet. It has identified
and quantified a distinct difference between the two cases as
to the most relevant frequency and the spatial structure of the
dynamically most prominent coherent structure. This study
has also shown the value of temporaland spatial information
in the description of flow behavior, and it is hoped that the
Dynamic Mode Decomposition will become a useful tool in the
quantitative analysis of fluid flows.
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