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Abstract This article discusses the estimation of the deformation rate and rotation rate tensor from results 
obtained by 3D Least Squares Matching (LSM), which is applied to volumetric voxel spaces for the 
calculation of 3D velocity fields. It is shown that LSM already yields the velocity gradient matrix for 
computation of the deformation and rotation rate tensor. Vorticity, shear and strain are calculated without 
applying central differences schemes. It is shown that LSM is well suited for the extraction of the 
deformation parameters in cases of small to medium deformations. The accuracy and constraints will be 
pointed out by analyzing the coefficients of the tensors. Results are presented for simulated and experimental 
datasets. 
 
 
1. Introduction 
 
In the last decades several investigations have been performed to experimentally describe the 
motion of fluid. The fundamental theorem by Helmholtz says that every infinitesimal motion of a 
fluid element can be decomposed in translation, rotation and deformation.  
Initially, the measurement technique Particle Image Velocimetry (PIV) was used for 2D 
investigations yielding a planar field with translational velocities in the Eulerian frame [1]. Thus, 
only one part of the fundamental theorem could be described in 2D. Developments like Scanning 
PIV [2], Holographic PIV [3] and Tomographic PIV [4] expanded the description of fluid motion to 
3D. Here, correlation based techniques, like 3D cross correlation, are frequently applied in the post 
processing on gray value voxel spaces to extract the zero order translational velocity components 
neglecting the higher order terms of rotation and deformation. The assumption is that the flow field 
is smooth and not significantly influenced by rotational or shear displacements, thus yielding the 
zero-order translational displacement field with an additional uncertainty in measurement due to 
neglecting the higher-order terms. Reduction of the measurement uncertainty can be achieved by 
window deformation techniques [5]. The higher-order motion terms are then estimated by finite 
difference schemes of the velocity field information on discrete grids (indirectly by consideration of 
the translational velocities of neighbouring elements). The assumption is that the higher order fluid 
motion of an element is only affected by the translational velocity components of the neighbouring 
elements.  
Another approach for estimation of velocity fields is Least Squares Matching (LSM) [6]. LSM has 
already been successfully used in the analysis of 2D particle images. Nevertheless, cross correlation 
techniques outperformed LSM because of the shorter processing times. In contrast to correlation 
based techniques, Least Squares Matching (LSM) shifts, rotates and stretches a fluid area. For this 
purpose, the least squares matching algorithm iteratively compares gray value information of an 
interrogation area in the first time step with the gray value information in the second time step. This 
is an iterative least squares procedure applying an affine transformation on the interrogation areas. 
In 2D this results in six transformation parameters and in 3D this results in twelve transformation 
parameters for each interrogation area.  
So, the advantage of LSM is that while calculating the zero order translational velocities, the first 
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order terms of motion are considered increasing the accuracy of the velocity field. Moreover, the 
affine transformation includes parameters like rotation, shear and strain of the interrogation area. 
This paper shows how to extract these parameters from the affine transformation and to transform 
them in the description of fluid motion.  
For this purpose, this article first discusses the necessary principles (fundamental theorem of fluid 
motion, Least Squares Matching) and the connection of both principals to calculate the deformation 
rate and rotation rate tensor via the results obtained by LSM. A parametric study is performed on a 
single volumetric cube to show the accuracy and the constraints of the estimation of deformation 
and rotation rate. A simulated Hill type vortex shows the strength of the method for identifying 
regions in the flow of high fluid mechanical interest. At the end we will show results for the 
benchmark experiment of a vortex ring.  
 
 
2. Principles 
 
This section summarizes the basic principles for understanding the estimation of the rotation and 
deformation rate tensor via the dataset obtained by 3D Least squares matching. For this purpose, the 
fundamental theorem for fluid motion is shortly described. The equivalent description in terms of 
transforming one system (basic cube) into another system (deformed cube) as obtained by 3D LSM 
is discussed and both mathematical descriptions are compared showing that 3D LSM yields the 
velocity gradient matrix and consequently the rotation and deformation rate tensor. 
 

 
Fig 1. Definition of fluid motion: E represents the fluid element at two successive time steps; P is a point 

inside the infinitesimal fluid element; the velocity of P (uP) is the sum of the translational velocity u0 
and the deformation velocity udef 

 
2.1 Fundamental theorem of fluid motion 
The fundamental theorem by Helmholtz says that the velocity at a point x+dx inside an infinitesimal 
fluid element E at x can be decomposed in a constant translational velocity u0 (x) of the fluid 
element and in a velocity udef (dx) resulting from the deformation of the fluid element as a function 
of the distance dx from the center of the fluid element as shown in figure 1. Mathematically, this is 
written: 
 

)(),(),( 0 xdutxutxdxu def+=+  (1) 
 
The velocity at dx in the infinitesimal volume element resulting from deformation is written in 
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terms of the velocity gradient matrix V: 
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It is generally that the Jacobian of the velocity can be decomposed in a symmetric tensor D and an 
asymmetric tensor R, where R describes the rotation rate tensor and D the deformation rate tensor. 
 

DRV +=  (3) 
 
The deformation rate tensor describes strain εij, i=j and shear εij, i≠j of the infinitesimal volume 
element resulting from velocity gradients in the inner of the volume. 
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The rotation rate tensor describes the vorticity ω in each spatial direction x, y, z. 
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It is obvious that calculation of the deformation rate and rotation rate tensor for fully describing 
fluid motion needs the evaluation of the velocity gradient matrix V. 
 
2.2 3D Least Squares Matching (3D LSM) 
The basic principle of Least Squares Matching is the evaluation of a transformation, which 
transforms the state of a system into another state of the same system. For this purpose the states of 
the system are compared via an iterative least squares procedure. In the application of 3D LSM to 
volumetric particle data as obtained by Tomo PIV, the system is an interrogation volume (cuboid) 
and the state of the system is the gray value representation of particles. The transformation is 
evaluated in an iterative least square adjustment procedure, where the gray values in state one are 
transformed into the gray values in state two. A detailed description can be seen in [7]. The 
geometrical model is an affine transformation for each cuboid E transforming all positions at state 
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one in the inner of the cuboid into the positions at state 2. 
 

E
dzcdycdxccz
dzbdybdxbby
dzadyadxaax

13121102

13121102

13121102

⋅+⋅+⋅+=
⋅+⋅+⋅+=
⋅+⋅+⋅+=

(6) 

 
The index 1 means the state of the volume element at time step 1 and the index 2 the state of the 
volume element at time step 2. The parameters a0, b0 and c0 are the constant translational 
displacements valid for each point in the infinitesimal cuboid E. In the following the translational 
displacements in the cuboid E at x will be t0(x) = (a0, b0, c0)T directly yielding the translational 
velocity of all points in the cuboid E at x. 
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The deformation of the cuboid is described by the transformation matrix T: 
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2.3 Velocity gradient matrix 
The velocity gradient matrix is necessary for the computation of the deformation and rotation rate 
tensor. The result from LSM is the transformation matrix und the displacement vector. So, for a 
given point P1 = (dx ,dy,dz)T in the inner of the cuboid E the position of the point P2 is calculated 
via the transformation matrix assuming that the translational displacement is zero: 
 

12 PTP ⋅=  (9) 
 
The velocity of the point due to the deformation is calculated by: 
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So, by comparison of (2) and (10) it is clear that the velocity gradient matrix V of a volume element 
E and as a consequence the rotation rate R and deformation rate tensor D is derived by subtracting 
the identity tensor I from the transformation matrix T and by following division by the separation 
time ∆t. 
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3. Numerical assessment 
 
In this section we present numerical results for the estimation of the rotation rate and deformation 
rate tensor obtained by LSM. The accuracy of the estimation is analysed via synthetic generated 
voxel spaces. For this purpose a parametrical study is performed by analysing the deformation of a 
well defined cube. The interpretation of fluid mechanical aspects is shown at the end via a 
simulated Hill type vortex. 
 
3.1 Cube deformation 
The following parametrical study extracts influences on the estimation of the rotation rate and 
deformation rate tensor. Parameters are number of particles, noise and strength and number of 
deformation. The synthetic set-up is shown in figure 2. A cubic element (60x60x60 voxel) is 
generated with the coordinate system in the center of gravity. A part of the element (40x40x40) is 
then filled with homogenous sized particles (3x3x3 voxel elements) at random positions having a 
Gaussian intensity distribution. The positions of the particles are chosen with sub pixel accuracy 
and represent the original cube without deformations. The particle positions are then deformed via 
defined shearings and strains and following rotations. The shifted particle positions represent the 
deformed cube. The undeformed and deformed cubes are then analysed via LSM to calculate the 
transformation matrix and in the following processing step the velocity gradient matrix. The 
computation of the LSM parameter is performed by an adapted code given by Thomas Nonn from 
Dantec Dynamics. 

 
Fig 2. Numerical set-up for the parametrical study of the cube deformation  
   
As LSM is an iterative least squares procedure, it is sensitive to starting values. The analysis herein 
is performed without the knowledge of starting values resulting in a higher number of necessary 
iteration steps to calculate the transformation matrix within predefined boundaries. To make the 
result independent of the number of iteration steps, the iterative procedure is stopped after 200 
iterations, which is far beyond necessarily about 10 iterations for small deformations [10].  
In the following the value dev is defined as the relative accuracy of the measured deformations, 
where σcalc is the calculated value (ωi, εij) and σ0 is the initial value (ωi0, εij0): 
 

%100
0
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−
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σ

σσ calcdev  

 
Figure 3 on the left shows the accuracy of the absolute value of rotation as a function of particle per 
pixel (ppp). Particle per pixel is defined by generated number of particle positions divided by the 



15th Int Symp on Applications of Laser Techniques to Fluid Mechanics 
Lisbon, Portugal, 05-08 July, 2010 

- 6 - 

size of one side of the cube (herein 40x40 pix²). The deformation consists of rotations around each 
axis and strain and shear in two planes representing a cube with low magnitude in deformation but 
large number of different deformations. At low particle densities the error is very high up to 80 % 
converging to 10 % within a slightly increasing ppp. Common 2D PIV images have a number 
particle density of 0.1... 0.2 ppp. This is much higher than the observed border at 0.005 ppp in 
figure 1. This is in agreement with [8]. They used a 2D LSM approach for Particle Tracking 
Velocimetry, which measures velocities at lower number particle density. Nevertheless, the 
following investigations will be performed at 0.1 ppp, because the aim of this paper is the 
application of LSM to Tomo PIV. But to point out, LSM delivers a constant accuracy of 10 % 
beyond 0.005 ppp.     

 
Fig 3. Accuracy in measurement;  

left: as a function of ppp (deformation: ω = φ = κ = 5°; dxx = 1.1, dyy = 0.9, dzz  = 1; dxy = 0.1, dxz = 0.1, 
eyz= 0);  
right: as function of noise (deformation: ω = 12; φ = κ = 10°; dxx = 1, dyy = 1, dzz  = 1; dxy = 0, dxz = 0, 
eyz= 0) 

 
Figure 3 on the right shows the deviation as a function of noise. Noise is included in a way that the 
gray value of each voxel position is superimposed by a randomly standard deviation. The maximum 
standard deviation is defined between 0 and 255 meaning noise 0 is a standard deviation of 0 and 
noise 1 is a standard deviation of 255. It is clearly recognizable that dev increases to more than 10 
% from a noise of 0.2. This that LSM is applicable, if the noise does not increase 20 % of the 
highest magnitude in the images, herein 255. The reason probably is that the shapes of the particles 
start to smear with the surrounding.   
The relative deviation in absolute rotational strength as a function of increasing rotational strength 
(increasing deformation) shows figure 4. The solid line shows the deviation for ωy ,ωz = 0° and the 
dashed line shows the deviation for ωy ,ωz =15°. The solid line remains nearly constant up to a 
rotation in x-direction of about 15°. The deviation is pretty low (< 3%). Between 15° and 20° the 
deviation dramatically increases being beyond 10% at about 22°. If rotations around the other axes 
are included, two characteristics can be concluded (dashed line). The deviation for small rotations is 
increased (≈ 7%) and the sudden increase of the deviation is shifted to lower values of ωx. This 
problem is well known in literature and results from the assumption of the affine transformation. 
The transformation is linear, which is valid for small deformations. But when the absolute 
deformation is increased, the transformation becomes non-linear.   
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Fig 4. Accuracy in measurement as a function of ωx  

(deformations: φ = κ = 0° -solid- /15° -dashed-; dxx = 1 dyy =1, dzz = 1; dxy = 0, dxz = 0, dyz= 0) 

 
Figure 5 shows the influences on the accuracy on shear and strain. In both classes of deformation 
trends are visible. On the one hand the deviation again dramatically increases, when a certain 
deformation is exceeded. On the other hand the deviation increases for lower deformation, if 
multiple deformations are included. Nevertheless, the deviation of strain and shear is in the order of 
magnitude of about 1% remaining nearly constant also in the case if multiple deformations are 
included.    
 

 
Fig 5. Accuracy in measurement;  

left: as a function of shear in xy (deformations: ω = φ = κ = 0° ; dxx = 1 dyy =1, dzz = 1; dxz = 0 -solid- 
/0.3 -dashed-, dyz= 0 -solid- /0.3 -dashed-);  
right: as a function of strain in x (deformations: ω = φ = κ = 0° ; dxx = 1 dyy =1, dzz = 1; dxz = 0 -solid- 
/0.3 -dashed-, dyz= 0 -solid- /0.3 -dashed-) 

 
The parametrical study of the cube deformation shows that LSM can handle multiple deformations 
up to certain strength. The accuracy is in the order of 1% if only one class of deformation is 
included. If multiple classes of deformation are included, the accuracy decreases to about 10 %. 
Nevertheless, strong deformations are not capable of the LSM algorithm. The reason is probably in 
the assumption of an affine transformation.     
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3.2 Hill type vortex 
In the numerical assessment we use the hill type vortex ring for validation of the extraction of the 
deformation and rotation rate tensor from the LSM results. The hill type vortex is characterized by 
spherical streamlines, a donut like vortex core and two stagnation points (upstream and 
downstream). The exact solution of the Navier Stokes equations for the inner part (r<R) is written in 
cylindrical coordinates: 
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UR is the radial velocity, UΦ is the circumferential velocity and U0 is the transport velocity of the 
vortex. For the outer part of the vortex (r>R) the solution is written: 
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As the LSM algorithm is defined in Cartesian coordinates, the velocity field is transformed from 
cylindrical coordinates into Cartesian coordinates. The size of the generated velocity field is 
101x101x101 voxel. The Cartesian grid is then filled with 1000 homogenous sized particles (3x3x3 
voxel) with a Gaussian intensity distribution, meaning that 9% of the whole volume is filled with 
particles. The sub-pixel displacement of the particles due to the velocity field is then estimated with 
a Runge-Kutta scheme. Afterwards random noise with standard deviation of 1.5 is superimposed. 
The chosen conditions (random particle positions and noise) are a good approximation for real 
experimental conditions. The size of the analyzed cuboids is 15x15x15 voxel with an overlap of 
75%. This results in 10648 translational displacements and transformation tensors. 
The visualization of some results shows figure 6. The figure shows the velocity vectors in the 
symmetry plane x-z, the 3D streamlines starting above the upstream stagnation point, and 
isosurfaces of the vorticity magnitude (gray), the positive (orange) and the negative (blue) strain. 
Moreover, some numerical results of the deformation rate and rotation rate tensor are included. The 
generated streamlines clearly follow the exact solution of the hill type cortex. The streamlines form 
a spherical shape. The velocity vectors in the symmetry plane identify the velocity distribution of a 
hill type vortex. No outliers are recognizable. The isosurfaces of vorticity and strain excluded from 
the transformation matrix derived by LSM identify the main features of the hill type vortex without 
any further post processing steps. The upper and lower stagnation points are highlighted. The 
volume elements in the upper stagnation point are compressed in z-direction and expanded in x- and 
y-direction (εzz<0, εxx>0, εyy>0). In the lower stagnation point the scene is inverted. The isosurface 
of the vorticity magnitude identifies the donut like vortex core. The numerical result for the rotation 
rate tensor in the symmetry plane x-z at the vortex core for x<0 and x>0 is given. The prefixes of 
the entries for vorticity ωy agree with the physical interpretation.  
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Fig 6. Visualization of some results obtained by LSM applied to the simulated hill type vortex ring; 

isosurface of vorticity magnitude (blue) identifies the donut like vortex core, isosurface of positive 
(red) and negative (blue) strain rates identify stagnation points; 3D streamlines show a spherical 
shape and the velocity vectors in the symmetry plane y-z characterize the velocity field of the hill 
type vortex    

 
The numerical results show that the estimation of the rotation and deformation rate tensor via LSM 
delivers correct results without an exhausting post processing via central derivatives. The cube 
deformation showed an accuracy of about 1 % for small and single deformations and 10 % for small 
and multiple deformations. The Hill type vortex showed that physical aspects can simply be 
excluded from LSM. 
 
4. Experiment 
 
The experimental set-up is shown in figure 7. The laser beam of a continuous Argon-Ion laser 
Coherent Innova 70 (2 W) passes an optical lens system to adjust the desired thickness of the light 
sheet. The rotating mirror drum reflects the laser beam into the direction of the observed volume 
and generates successively 10 parallel light sheet planes with a thickness of 10 mm. The studied 
flow is a vortex ring travelling in an octagonal glass tank filled with water. The vortex is generated 
at the exit of a piston tube with a diameter of 50 mm. The neutrally buoyant seeding particles (100 
microns) are injected into the center of the vortex generator. The particle images are recorded with a 
three camera system consisting of digital high speed cameras Photron APX RS with a resolution of 
1024 x 1024 Pixel² and an angular displacement of 45°, -45° and 90°. The cameras are equipped 
with telecentric lenses at f-number 16 resulting in a parallel projection for the observed volume. The 
side of the octagon opposite to the entrance side for the laser is covered with a light absorbing mat 
that reduces stray reflections. This is also valid for the faces opposite the cameras, thus giving a 
perfectly black background. The experiments are performed with a recording rate of 1000 frames/s. 
Using 10 scanning planes results in a separation time of 10 ms for each subsequent illumination of 
one scan plane. The image size of the cameras and the light sheet thickness define the measured 
volume, resulting in about 90 x 90 x 10 mm³ for one light sheet.   
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Fig 7 Experimental set-up consisting of three high speed cameras APX RS equipped with telecentric lenses  
 
The volumetric reconstruction as well as LSM is performed by Dantec Dynamics Software. The 
volumetric reconstruction bases on a multiple projective transformation of each camera view into 
the depth layer of the observed volume and a minstore algebraic reconstruction technique. For 
further information on the volumetric reconstruction see [10]. In total a regular grid of 
278x1112x944 voxel with gray value information is generated for each time step. The velocity field 
as well as the parameters of the affine transformation is calculated as presented in [7]. To 
summarize, the LSM algorithm is performed on 25³ cuboids resulting in 25³ velocity vectors and 
transformation matrices. The result is visualized in figure 8. The vortex ring is clearly recognizable. 
Beside the velocity vectors the isosurface of vorticity magnitude is included. To point out, the 
vorticity magnitude is not calculated via central difference schemes, but via the parameters of the 
affine transformation.     

 
Fig 8 Vortex ring: the velocity vectors have a uniform length; the blue isosurface represents the vorticity 

magnitude showing the vortex core 
 
5. Conclusion 
 
The article discussed the estimation of the rotation and deformation rate tensor via the affine 
parameters resulting from LSM. It is shown that the calculation is straight forward without using 
any central difference schemes. The accuracy is estimated via the deformation of a well defined 
cube. The result is that LSM is valid for small multiple deformations and for medium single 
deformations. The accuracy is about 1% for single deformations and under 10 % for multiple 
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deformations. It seems that LSM is not sensible to high deformation rate, but sensible to high 
deformations. The extraction of the parameters is performed on a simulated as well as on an 
experimental vortex ring, both showing that the physical character of the vortex ring is described by 
the parameters of the affine transformation. Future work has to be performed in cases of large 
deformations. Here, the linear affine transformation needs to be replaced by a non linear model.       
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